LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034										
B.Sc. DEGREE EXAMINATION – MATHEMATICS										
FOURTH SEMESTER – APRIL 2023										
18/17/16UST4AL01 – MATHEMATICAL STATISTICS										
Date: 04-05-2023 Dept. No. Time: 09:00 AM - 12:00 NOON	Max. : 100 Marks									
SECTION - A										
Answer all the questions.	(10 X 2 = 20)									
1. Define unbiased estimator.										
2. Write any two properties of ML estimators.										
3. Define confidence interval										
4. Define Efficient Estimator.										
 Write short notes on simple and composite hypotheses. Define two tailed tests 										
7 What are the applications of t-distribution in tests of significance?										
8. Give the test statistic for testing the difference between two population v	ariances.									
9. State the principles of least squares.										
10. When we can use sampling methods?										
Answer any five questions	$(5 \times 8 = 40)$									
Answer any nee questions.	$(5 \times 6 - 40)$									
11. a) Show that the sample mean is an unbiased estimator of the population mean.b) Define sufficiency and state Factorization Theorem										
12. Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on The basis of a sample of size 'n'										
13. State and prove Rao-Blackwell theorem.										
14. Find 100(1- α) % confidence intervals for the parameter μ when σ^2 is unknown in the normal distribution.										
15. Describe the steps involved in the testing of statistical hypothesis.16. Let p be the probability that a coin will fall head in a single toss in order	to test H ₀ :									
$p = \frac{1}{2}$ against H ₁ : $p = \frac{3}{4}$ the coin is tossed 5 times and H ₀ is rejected if more than 3 heads										
are obtained. Find the probability of type I Error and power of the test.										

17. Below are given the gain in weights (in kgs) of pigs fed on two diets A and B

Diet A	25	32	30	34	24	14	32	24	30	31	35	25			
Diet B	44	34	22	10	47	31	40	30	32	35	18	21	35	29	22

Test if the two diets differ significantly regarding their effect on weight increase.

18. Explain in detail various Sampling Methods.

SECTION-	С
-----------------	---

		SF	CTIO	N- (
Answer any two questions.							(2 X 20 = 40)
19. i) Describe the procedure of ii) In random sampling from estimators (MLE) for i) u	Maximu normal μ when σ ²	im Likeli populatio	ihood E on N (μ n ji) σ	Estim (σ^2)	nation. , find th	e maxim wn	(10) num likelihood (10)
20. i) State and prove Cramer-	(10)						
ii) Obtain the Most powerfur random sample of n obse	l test for ervations	testing F from N(I: μ = μ μ, σ ²),σ	$t_0 ag$	ainst K: known a	$\mu = \mu_1 \iota$ at level o	using a x. (10)
21. i) State and prove Neyman -ii) The table below shows the	– Pearsor e data ob	n Lemma tained du	1ring si	nall	pox out	break.	(12)
	V		Attac	ked	Not A	ttacked	-
	Vacci Not Vac	nated	18	5	13	09 115	-
Test the effectiveness of % % Level of significance.	vaccinati	on in pre	venting	g the	attack f	from sm] allpox. Test at 5 (8)
22. A test was given to 5 studen The individual scores are	its taken	at randor	n from	the :	5th class	s of 3 sc	hools in 9 towns
			•		Scores	E	
	ols	School	A 9	<u>Б</u> 7	$\begin{array}{c} C \\ 6 \\ 5 \end{array}$	E 8	
	cho	School	II 7	4	5 4	5	
	02	School	III 6	5	6 7	6	
Carry out the analysis of var	riance an	d draw th	ne conc	lusio	on.		
		#;	######	±###			